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A flat pla’te x = 0, Iyl < L is initially at rest in an electrically conducting, inviscid, 
incompressible fluid permeated by a uniform magnetic field (B,,, 0,O). The plate 
is impulsively accelerated to a small velocity ( -  U ,  0,O) which is then kept 
constant. It is assumed that L V / A  B 1 and U / V  < 1, where V is the Alfven 
velocity, and h is the magnetic diffusivity. 

Four stages in the development of the flow are distinguished, the last three 
being: 

(ii) L 9 Vt B (At)*. During this stage the initial potential flow is being 
disturbed by propagation of electric current and vorticity from the plate. The 
initial discontinuity on the plate has only propagated a small distance away 
compared to L, but a large distance compared t o  the length scale of diffusion (At)#. 
Exact solutions to the flow are found in the neighbourhood of y = -L  and 

(iii) Vt 9 L > (At)*. The asymptotic behaviour of the electric current and 
vorticity on the plate are determined showing that a column of fluid of length Vt 
moves with the plate, aligned to the magnetic field. The transverse diffusion of 
the current sheets bounding the column accelerates the fluid in layers of thickness 

(iv) (At)$ $ L. Unlike stages (ii) and (iii), where the motion is dominated by 
the propagation of vorticity and electric current as Alfven waves from the plate, 
diffusive mechanisms completely dominate the motion. ‘Slug ’ flow is maintained. 
The nature of the flow, including the structure of the layers bounding the column 
are determined for 1x1 < (At)&. 

y = 0 (x = 0). 

O(ht)*. 

1. Introduction 
When a rigid body is impulsively jerked into motion in an incompressible 

non-conducting fluid that is initially at  rest, an irrotational flow is instan- 
taneously established by the impulsive pressure distribution. Vorticity then 
diffuses (through viscous forces) into the fluid from the surface of the body, and 
is convected by the irrotational stream past the body, and ultimately by its own 
self-induced velocity field. 

In  a conducting fluid permeated by a uniform magnetic field, there is a further 
mechanism by which the flow may acquire vorticity, and which may (if the field is 
strong enough) totally dominate the development of the flow. This mechanism is 
the propagation of vorticity (and electric current) by Alfven waves. Immediately 
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after the impulsive start to the motion, there is a vortex sheet on the body. 
This discontinuity may subsequently be unacceptable to the body and propa- 
gate away as a wave in both directions along the applied field, with the Alfven 
velocity. Diffusive mechanisms (viscosity, and now also finite conductivity) will 
modify the vorticity distribution, as will convection of vorticity by the total 
velocity field. But it might be anticipated that if the field is very strong, the 
Alfven wave mechanism will be the dominant process by which vorticity can 
penetrate the fluid, at  least for some considerable time. 

Certain aspects of the problem have been studied by previous authors. 
Stewartson (1956) considered the flow set up in an inviscid fluid by accelerating 
a perfectly conducting sphere from rest to a constant velocity parallel to the 
applied magnetic field. The governing equations were linearized on the assump- 
tion that this velocity was small compared to  the Alfven velocity. Assuming there 
were no instabilities, a model for the asymptotic state was obtained in which 
a column of fluid (parallel to the magnetic field) moves with the sphere, while 
the velocity in the layer bounding the column continues to increase indefinitely. 
Ludford & Singh (1963) re-examined Stewartson’s work and showed it to be 
incorrect, owing to the application of incorrect boundary conditions. However, 
by adopting a slightly different approach, an asymptotic solution was obtained 
which showed similar features, except that the velocity profile for the flow outside 
the column was less singular than Stewartson’s. No determination was made of 
the acceleration of the fluid in the layer bounding the column but the order of 
magnitude obtained by Stewartson appears to be still qualitatively correct. In 
both papers, when obtaining the asymptotic behaviour, the electrostatic approxi- 
mation was made implicitly (neglect of ax/at in equation (1.10) below). It follows 
that the effects of Alfven wave propagation, which are important for a finite time, 
do not appear in the asymptotic analysis. 

Ludford & Leibovich (1965) considered the two-dimensional flow due to the 
impulsive motion of a non-conducting, thin airfoil aligned both to the flow and 
the applied magnetic field. The fluid was supposed perfectly conducting and 
inviscid. The governing equations were linearized (as in Stewartson 1956) on 
the assumption that the velocity of the airfoil was small compared to the Alfven 
velocity (in later papers (Leibovich & Ludford 1965, 1966), this approximation 
is not made and the non-linear terms are retained). The fluid velocity and per- 
turbation magnetic field were separated into a potential part, resulting directly 
from the pressure distribution, and a wave-like part (independent of the pressure) 
corresponding to the emission of Alfven waves from the body both upstream and 
downstream (Stewartson 1960). The development of the flow was analyzed by 
noting that (unlike the potential disturbance) the Alfven waves may have a 
transverse length scale much shorter than the longitudinal length scale, as a 
result of the thinness of the airfoil. Asymptotically, a column of fluid was shown 
to move with the airfoil bounded by electric current and vortex sheets. 

Since the main concern of the above authors has been with the ultimate flow, 
the work of Chester (1961), Chester & Moore (1961), and Glauert (1964) is also 
relevant. They were all concerned with the steady flow obtained when a body 
moves with uniform velocity through a viscous fluid aligned to the applied 
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magnetic field. Chester & Moore showed that, for large Hartmann number a 
column of fluid moves with the body (as was anticipated by the above transient 
flow models), while outside the column the fluid is a t  rest. More explicit results 
were obtained by considering a disk placed perpendicular to the magnetic field, 
paying particular attention to the layer dividing the column from the fluid at 
rest. Glauert reconsidered this layer in greater detail. Instead of just assuming 
that the magnetic field was weakly perturbed, the full equations were retained 
and the usual boundary-layer approximations made. Assuming the magnetic 
Reynolds number was small, a first approximation was obtained in full agree- 
ment with the results of Chester & Moore. However, a second approximation 
could not be found satisfying the boundary conditions. 

Y 

t 
/ 

FIGURE 1. Initial streamlines for the prototype problem. 

The aim of this paper is to provide an exact solution of a prototype problem 
which will exhibit (a )  the acquisition of vorticity by the fluid through the Alfven 
wave mechanism ($§ 3 and 4), (b )  the ultimate settling down to a steady state 
through the diffusive (Stewartson) mechanism ($$ 5 and 6). I n  order to isolate 
these mechanisms, both viscosity and non-linear effects will be neglected; this 
puts certain restrictions on the dimensionless numbers that characterize the flow 
(see equations (1.2), (1.3), (1.4)). The subsequent analysis extends the Ludford & 
Leibovich (1965) model of Alfven wave propagation from slender bodies to  
‘broad’ bodies ( $ $ 3  and 4). The discussion of diffusive effects in this model 
demonstrates the ‘early’ stage of the diffusive (Stewartson) mechanism ( Q  5). 
Thus the analysis provides a bridge between the previously unrelated work of 
Ludford & Leibovich (1965) and Stewartson (1956). The present choice of 
prototype problem enables the final (Stewartson) mechanism to be considered 
in greater detail than before ( $ 6 ) ;  particular attention is paid to the layer 
dividing the column of fluid from the flow in the outer regions. 
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Figure 1 indicates the configuration to be considered. Suppose that a flat plate 
of finite width 2L is immersed in an inviscid, incompressible fluid of infinite 
extent, with density p, electrical conductivity CT, and magnetic permeability p, 
and suppose that the fluid is permeated by a uniform magnetic field B, perpendi- 
cular to the plate. For time t’ < 0, the plate and the fluid are at rest, and at  the 
instant t‘ = 0, the plate is jerked into motion with uniform velocity - U parallel 
to B,. Relative to axes Ox‘y‘ moving with the plate (as in figure l ) ,  the flow u’ at 
time t‘ = 0 + is irrotational and u’ - U at a large distance. The streamlines are 
as indicated in the figure; there is a vortex sheet on each side of the plate. The 
problem is to  determine the nature of the flow for all t’ > 0. 

Defining the Alfven velocity 
v = Bo/J(PP), (1.1) 

A = U / V  and /3 = h / L V .  (1.2) 

the character of the flow depends on the magnitude of the two dimensionless 
numbers 

A is the Alfven number and p-’ is the Lundquist number. Moreover, the neglect 
of the viscous term vV2u in the equation of motion is justified provided the 
Hartmann number M = V.L/J(vh) 9 1. 

A < 1  and p <  1. (1.4) 

(1.3) 

It will be assumed throughout this paper that 

These conditions are not totally unrealistic by laboratory standards, although 
a very strong magnetic field would be required to satisfy p < 1, in say, mercury 
with L of the order of centimetres. The condition A < 1 permits the total neglect 
(in a first approximation) of all the non-linear terms appearing in the governing 
equations.? This is not strictly justifiable in the neighbourhood of the edges 
x’ = 0, y‘ = L of the plate, where U’ is initially singular; non-linear effects must 
be important near these edges. If, however, a self-consistent description of the 
overall development of the flow is obtained on the basis of the linearized equa- 
tions, it  may reasonably be supposed that the non-linear effects may be treated 
as a localized perturbation, and that the description obtained is at any rate 
qualitatively correct. The difficulty encountered due to the singular behaviour 
near the ends of the plate would not appear in the case of say a circular cylinder. 
However, if progress is to be made analytically some simplification of the 
geometry is required, e.g. the slender body approach of Ludford & Leibovich 
(1965). Since an important motivation for this present study is the determination 
of the nature of Alfven wave propagation from a ‘broad’ body, a natural choice 
is a slender body placed perpendicular to the flow. Thus the consideration of a 
flat plate leads to two simplifications. First, the magnetic boundary conditions 
on the body, which are normally very involved, are simple. Secondly, the 
problem may be reduced to solving an integral equation (2.28). 

t The approximation is similar to the acoustic approximation in gas dynamics; if a body 
is jerked into motion in a compressible (non-conducting) fluid, the equations may be 
linearized if the velocity is everywhere small compared to the speed of sound. 
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Let B = Bo + b’ represent the perturbed magnetic field (b‘ = 0 at t’ = 0). We 
define dimensionless variables as follows: 

x = x‘/L, t = ( P / L )  t’, (1.5) 

where $ is the stream function and x is the magnetic vector potential. The 
dimensionless vorticity and electric current distributions are 

o = ( O , O ,  -V2$), j = (O,O,  -V2x). (1.8) 

Neglecting the non-linear terms ( A  < 1) the equations governing the motion 
reduce to the well known form (cf. Stewartson 1956, equations (2.11) to (2.15)) 

(1.10) 

Equation (1.9) is the vorticity equation, the term on the right representing 
generation of vorticity by the rotational Lorentz force, and (1.10) may be 
recognized as Ohm’s law with the electric current E p  axlat. 

If /3 = 0, (1.9) and (1.10) are simply equations describing Alfven wave propaga- 
tion in an ideal fluid. Since disturbances in w and j originate from the plate, 
considerations of symmetry indicate that the required solution is of the form 

(1.11) 
w = -jo(y, t + x), j = -jo(y, t 1-2) (x (x < ’ O),  O ) , I  

= -j0(y7t-x), j =j0(y7t-x) 

where j o (y ,  7) = 0 if 7 < 0. The determination of the function j, requires a con- 
sideration of the initial conditions, the boundary conditions and equation (1.10). 

At the instant t = 0 + , the flow is the unique irrotational flow past the plate 
and its stream function is given by 

$@, y ,  0) = $&, y )  = Im ((1 + x 2 ) 4  - 4, (1.12) 

where x = x + i y ,  while the perturbation magnetic field vanishes 

x ( x ,  y ,  0) = 0. (1.13) 

is skew- Subsequently the flow is symmetrical fore and aft of the plate? and 
symmetric in x: 

(1.14) 

On the plate $+Y = 0, (1.15) 

This of course is no longer true if non-linear effects are included. 
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and the normal magnetic field perturbation ax/ay is continuous across the plate; 
this condibion together with (1.14) implies that 

x = 0 on the plate, (1.16) 

(indeed ~ ( 0 ,  y, t )  = 0 for all y, t ) .  Further the symmetry condition implies that 

j = 0 for x = 0, IyI > 1. (1.17) 

Finally, + O ,  x - + O  as IzI -+a. (1.18) 

Theequations (1.8) to (1.10), theinitialconditions (1.12), (1.13) andthe boundary 
conditions (1.15) to (1.18) complete the mathematical statement of the problem. 

I1 II 

_____------- -------- III I_. ---------___ _ _ _  ----__ 
111 ------_____ 

______-_- -------- I 

FIGURE 2. Pictorial representation of the stages (ii), (iii) and (iv) in the development of 
the flow. (a)  Stage (ii), ,f3 Q t G 1. ( 6 )  Stage (iii), 1 < t < p-1. (c) Stage (iv), t & p-1. 

The subsequent analysis reveals that four stages can be distinguished in the 
development of the flow, and it may be as well to provide, in anticipation, a 
summary of the broad physical characteristics of the development during these 
stages. Remembering that p < 1, the stages of development are as follows: 

(i) t < p. At this early stage of the flow, the initial diffusing current sheet of 
thickness O(Pt)B is not yet clear of the plate, since t < (pt)g. At this stage there is 
some similarity with the Rayleigh problem, as treated by Dix (1963). The details 
are not of very great interest in the present situation and are not analyzed in 
this paper. 
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(ii) p < t < 1. During this stage, the initial ALfven wave is well clear of the 
plate, but its distance from the plate is still small compared with 1 (figure 2 (a ) ) .  
The influence of the finite width of the plate is not yet felt as far as the flow ( a )  in 
the neighbourhood of the edges y = 5 1 and ( b )  in the neighbourhood of the 
centre y = 0 of the plate is concerned. The exact solution for the development of 
the flow during this stage in these two regions is given in 3 3. 

(iii) 1 < t < p-'. During this stage the initial Alfven waves centred on 
x = f t ,  IyI < 1 are far from the plate. The diffusion length scale (,&)A is still, 
however, small compared with the width of the plate, and the electric current, 
travelling as an Alfven wave, particularly in the neighbourhood of the planes 
y = & 1 has not yet diffused much in the lateral directions (figure 2 ( b ) ) .  This 
stage of the development is analyzed in $04 and 5. 

(iv) p-' < t. By this final stage (see § 6 ) ,  diffusion effects have had time to 
establish an asymptotic state, a t  any rate for 1x1 < (pt)S. The Alfven wave 
mechanism propagates electric current a distance O(t)  in the x direction. How- 
ever its influence on the fluid flow is negligible, since its strength is small O(/3t)-2 
due to transverse diffusion. The asymptotic state for 1x1 Q (,&)A is steady except 
for small regions within a distance O(/3x2/lt)i of the planes y = 1 (figure 2 (c)); 
within these regions the fluid continues to accelerate, the velocity being O(t/Px2)&. 
(Viscous effects would modify this result.) 

2. The integral equation 
With the aid of transform techniques the problem stated in $ 1  may be reduced 

to that of determining the solution of an integral equation (2.28). In  this section 
this integral equation is derived together with other basic equations required in 
the subsequent sections. 

We define Fourier and Laplace transforms 

and for clarity express the double transform as $ ( k , p ) .  The inverses of the 
transforms are 

+(y)  = LIrn 27l -a &k) e-ikudk, (2.3) 

where the contour C is taken from - im to im, to the right of any cuts and 
poles of &p).  

Taking the double transforms of the governing equations (1.8) to (1.10) 
leads to 

(2.5) 
a -  

p 6 i - j  = 0, ax 
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while the boundary conditions become 

2, $7, etc. -+ 0 as 1x1 -+a. (2.9) 

The region x > 0 is considered. Since equations (2.5) to (2.7) are fourth-order 
ordinary differential equations for p, x in terms of x, they have particular 
integrals enx, where n takes the values 

n = +Ikl, + A ,  (2.10) 

and where (2.11) 

Moreover, A has the important property 

Reh(k,p) > 0 when k is real and Rep > 0. (2.12) 

The two positive values are immediately excluded from the solution by the 
conditions as x-+ 00. Thus $7 and X are given by 

- 
@ = A,(k,p) e-Ax+A2(k,p) e-lklz, 

x = B,(k ,p)  e-*r+B,(k,p)e-lklX. 

(2.13) 

(2.14) 

The ratio of the constants is determined by equations (2.5) to (2.7) together with 
the boundary condition X = 0 on x = 0. Hence in terms of jo(y, t )  the electric 
current on x = 0 + , w, j, etc., are given by 

(2.15) 

(2.16) 

- 
w(x, k,P) = - (A/P)jo(k, P) e-nIxl, 

j(x, k , p )  = (sgnx)jo(k,p) e-hlxl, 

(2.17) 

x ( x ,  k , p )  = (sgnx) (1 + ~ p ) ~ ~ { e - ~ ~ ~ ~ - e - ~ k : ~ ~ ~ } .  k2-p2 (2.18) 

The Fourier transforms (2.15) to (2.18) are made analytic in a strip containing 
the real axis by defining Ikl as 

lkl = lim (k2+e2);. (2.19) 
E'O 

The significance of the various terms in (2.15) to (2.18) is appreciated most 
easily when ,!3 = 0. For, with this value of p, h = p and so (2.15), (2.16) clearly 
represent the Alfven wave propagation of electric current and vorticity (cf. 
equations (1 .11 ) ) .  Further, the e-hlzl terms in (2.17) and (2.18) represent the 
resulting response of the fluid flow and magnetic field, while the e-lkllrl terms 
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define the potential disturbance required to satisfy the governing equations 
and the boundary condition x = 0 on x = 0. For P 4 0, the effects of diffusion are 
included in the terms e-hlzl. However the significance of the e-lkllzl terms is still 
the same. 

Defining 

(2.20) 

(2.21) 

equation (2.17) after multiplication by - i k  becomes 

(all./aY) (x7 k ,  P) = f(X> k ,  P ) j o ( k ,  PI + g(x ,  k ,  P ) j o ( k P ) .  (2.22) 

Inverting this expression with respect to k leads to the convolution integrals 

The convenience of this representation is evident when ,8 = 0. In  this case g = 0 
and so we are left only with the first integral in (2.23). Now, as 1x1 --f 0, 

f ( X , Y , P )  + (sgny) ( 1  + P P ) P ( P  l v l ) 3  (2.24) 

@(X,Y,P)+(Sgny) ( l + P P ) + G ( ( P / P ) +  lYl,PP) (Y * 01, (2.25) 

where F ( x )  = (1/n){sinxCi(x)-cosxsi(x)}, (2.26) 

(2.27) 

for Rex > 0, Re s > 0. (The cosine and sine integrals Ci ( x )  and si (2 )  are defined 
in Erdelyi et al. (1953,II, $9.8).) The limit (2.24) may be obtained without diffi- 
culty by putting x = 0 and rotating the contour of integration into the line 
Im ( k / p )  = 0. The inverse of g, for y > 0, is obtained by deforming the contour 
around the cut Re (Ic/p*) = 0, Im (@k/p*  + i )  < 0 (provided 0 < x Q y) and pro- 
ceeding to the limit 1x1 + O .  It follows that, on x = 0, 

-1 

where 

Since 

(2.29) 

(2.30) 

we are left with an integral equation forjo(y,p) to be solved for IyI < 1 .  
Hence if the complete solution of this equation were known, the values of 

@ and x, etc., would be expressible in integral form for all x ,  y and t .  However, 
no general solution has been obtained owing to the complicated form of (2.28). 
Instead approximate solutions valid in certain circumstances are obtained by 
two methods, namely by approximating (2.28) itself ($34 and 6) or by solving 
(2.22) with x = 0 by Wiener-Hopf methods ( $ 8  3 and 5). In this way approximate 
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values of a$-jay and j  are obtained in certain regions of space, valid for particular 
time scales. 

Finally, since the inverse Fourier transform of (2 .16)  may be determined 
exact,ly, it is appropriate to state the inverse in this section. The inversion of 
e-xlzl is determined (Erdelyi et al. 1954, p. 16, equation ( 2 6 ) )  and hencej(x, y , p )  
can be expressed as the convolution integral 

where K,(x) is the modified Bessel function of the third kind defined by 

(2 .32 )  

3. The initial motion /? = 0, t 4 1 

Since the assumption p = 0 introduces a considerable simplification to the 
governing equations, this assumption is made here and in 5 4 .  It is a good approxi- 
mation over the time scales involved except in certain regions, especially those 
in which the electric current and vorticity are described by &functions. The 
strength of the &functions must be regarded as the limit as P - + O  of integral 
constraints valid over a small interval whose width is O(Pt)* (see 3 5 ) .  

( a )  The stagnation-point flow 

The initial motion at  t = O +  near x = 0 (x > 0 )  is given by 

where axes are taken moving with the plate. Subsequently it is clear by inspection 
of the governing equations ( 1.8) to (1 .10)  and the boundary conditions on $ and x 
on the plate, that the flow (and perturbation magnetic field) are described by 

- These equations give a simple description of the motion and provide a good 
(yet non-trivial) illustration of the effect ‘of freezing the magnetic field lines ’ 
into the flow. Equation (3.2) shows that the flow is stopped completely by the 

(3 .4)  
current-vortex sheet 

while the flow pattern is propagated downstream unaltered. The total magnetic 
field, given in the form 

B = i + A b ,  13.5) 

j(x, y, t )  = - w(x ,  y, t) = +y4x - t ) ,  

is 
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indicating that the magnetic field ahead of the current-vortex sheet is being 
uniformly compressed but remains unaltered once the sheet has passed (see 
figure 3). 

FIGURE 3. The instantaneous streamlines and magnetic field near the 
stagnation point ( t  4 1). 

( b )  The flow near the end of the plate ( y  = - 1) 

In order to discuss the initial motion in the neighbourhood of (0, - 1)  the length 
scale is altered and co-ordinates are taken with the origin now at the end of the 
plate. Hence by making the transformations 

y = 1 2Y *--1, x = $x*, (3.7) 

the initial conditions for the flow near ( O , O ) ,  €or axes moving with the plate, 
become (dropping the star) 

$o(x, y )  = I m  ( - i z )* ,  xo(x, y )  = 0 ( 121 < 1). ( 3 4  

The plate is now regarded as semi-finite so that the problem is to find $ and x 
subject to the initial conditions (3.8) and the boundary conditions 



492 A .  M .  Soward 

and 9 - Im (-iz)+, 
as --+m.-t I4 (3.10) 

Since the method of solution is somewhat lengthy, it is omitted here but is 
presented in detail in appendix A. The vorticity (and electric current) are obtained 
in the form (illustrated in figure 4) 

> t  x - 0, 

for 1x1 < t ,  y >, 0 and w = 0 otherwise,) 
(3.11) 

where Fl(r) is given by (A 17). Moreover, the fluid velocity and perturbation 
magnetic field are now in principle known, though interpretation of the integrals 

X 

FIGURE 4. The vorticity w plotted (a )  against x, for fixed y ( t /y  % 1 )  and 
( b )  against y, for fixed x. 

t This boundary condition reduces to the initial condition (3.8) as t + 0. 
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by which they may be expressed appears formidable. However, on x = 0, the 
velocity distribution is given by 

. - .  
where G1(7) is given by (A 21). 

i 
Streamline 

-- 
-I 

--- 
Vortex 
sheet 

(3.12) 

- - 
FIGURE 5. The instantaneous streamlines and magnetic field ( t  < 1 )  for 

axes moving with the plate. 

The solution indicates the existence of two vortex sheets. First, there is the 
initial discontinuity which propagates from both sides of the plate, namely 

(sgnx)j(x, y ,  t )  = - w(x, y ,  t )  = - 4y-i 6( 1x1 - t ) .  (3.13) 

Secondly, vorticity (and current) propagate from the end of the plate with 

(3.14) strength 
jo(y7 t )  = - if-* &Y),  
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corresponding to  the discontinuity of the horizontal velocity a t  y = 0; in 
particular (3.12) indicates that  

(Wr/ay)  (O,y, t )  it-3 (0 < - y < t ) .  (3.15) 

The uniformity of the horizontal velocity is not indicative of the propagation of 
waves in the y direction but results from the length scale of the potential disturb- 
ance being independent of direction. 

Elsewhere t,he propagation of vorticity is continuous and is of opposite sign 
to that in the sheets. This vorticity is clearly such as to inhibit motion of the 
fluid across the magnetic field lines (see figure 5). Near the sheets the vorticity 
increases logarithmically and is given (see equation (A 22)) by 

The curious symmetry of the vort’icity in the neighbourhood of the sheets and 
in the sheets themselves does not extend into the main body of the flow. Finally, 
i t  is worth noting that the total vorticity (and current) propagating away from 
either side of the plate is zero for t > 0 (equation (A 19)). 

( c )  TheJlow pust aJinite plate 
The nature of the magnetic field and velocity distribution near the middle and 
ends of the plate combine quite simply to give a general indication of the initial 
motion. I n  particular the fluid is brought t o  rest near the middle while a slight 
‘leaking’ is present a t  the edges of the plate where the horizontal velocity is 
decaying as t-4 (figure 5). 

4. The asymptotic solution p = 0, t-too 
Supposing that the fluid is perfectly conducting, the nature of the flow can 

be determined everywhere (for t 2 0), provided the solution to the integral 
equation 

(4.1) S _ ~ o ( ~ , P ) s g n ( y - 5 ) F @ / Y - 5 / ) d 5 =  -1 P ( R e p  ’ 01, 

(equation (2.28) with /3 = 0) is known. No general solution of this equation has 
been obtained. However, if we assume that the solution does not oscillate or 
grow exponentially with time, the asymptotic motion ( t - too)  may be found. 
Stewartson (1956) was obliged to make similar assumptions when determining 
the transient motion past a sphere and the reasons he gives apply equally well to 
the present problem. Moreover, since this assumption was verified for the initial 
motion past the plate (t < l), this provides yet further evidence that it is correct. 

(4.2) 

Consider the inversion integral 
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wherejo(y,p) only has singularities when Rep < 0,  p = 0. (Instabilities corre- 
spond to singularities of$,(y,p) in the right-hand half plane.) Since the contour 
of integration may be deformed into the negative half plane around the singu- 
larities, it follows that the dominant contribution to the inversion integral, as 
t --+ co, is obtained when 

The asymptotic behaviour of F(x)  may be determined (Erdelyi et al. 1953,II, 
p = O(t-1). (4.3) 

p. 146, equations (8) to (11)) as 

where y is Euler’s constant. Thus integrating (4.1) by parts leads to 

where 

and J( -1 , t )  = J(1,t)  = 0, (4.7) 
due to the skew-symmetry of j,,(y, t ) .  This form of the equation has two advan- 
tages. First, the current sheets that propagate from y = k 1 are now represented 
by the non-zero values of J (  t. 1, t )  rather than by &functions as they appear in 
jo (y , t ) .  Secondly, the equation is now in a convenient form for solution by 
successive approximation. Thus substituting 

&Y, P) = j o ( , ,  P) + j,(,, PI + *. . , 
into (4.5) we obtain 

1 
= -{2y+ (1 -y) [lnp(l -y) - 11 + (1 + y) [lnp(l +y)- ll}, (4.10) n 

1 

j 2 ( Y 9 P )  = [&-,P) {y  +In (PIY - El )I - i n ~ o ( t , P ) P l Y -  Ell d5, 

2 
= -_ lnp{(4y - 5 + 2 In (213)) + (1 - y) In (1 - y) 

nZP 
+ (1 + Y) In (1 +Y)> +PQ(Y), (4.11) 

where Q(y) is a function of y that need not b,e detzrmined and jn(y,p), for n > 2, 
is defined in a similar manner. In  this way J,  < Jn-l uniformly for y E [ - 1,1]. 

Asymptotically, as t+co, the only terms contributing to the inversion of 
Q(y,p) are those singular at  p = 0. Thus inverting (4.9) to (4.11) and differenti- 
ating with respect to y lead to 

+ o ( P ) ,  (4.12) 
2 
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as t+m, and so determine the asymptotic generation of vorticity and electric 
current on the plate. 

The ultimate flow is precisely that described by Ludford & Leibovich (1965) .  
Briefly, relative to axes moving with the fluid at  infinity, a column of fluid of 
length 2t moves with the plate bounded by a vortex sheet. Outside the column 
the flow is potential, O(t- l ) ,  and corresponds to a source of fluid at  ( - t ,  0) and 
a sink at (t ,  0). In  the column the magnetic field is increased by (1 ,O)  for x > 0, 
decreased by ( -  1 , O )  for x < 0 and is bounded by current sheets at  y = -t 1. 
Outside the perturbation field is O( 1) and corresponds to sources at  ( 5 t ,  0) 
together with a sink of twice their strength at  the origin. 

Finally, the nature of the current propagation from the plate when 
IyI < 1 ( t  % 1) is worth noting. In particular it decays very fast, O(tk2) ,  and 
displays the logarithmic behaviour near y = 1, similar to that found for the 
initial motion (t  < 1). 

5. The asymptotic solution (/3t)* < 1 < t 
So far no attempt has been made to determine the effects of the magnetic 

diffusivity (P =# 0). Evidently the current sheets propagating from the ends of 
the plate will diffuse transversely with a width O(Pt)+. Moreover, it may be 
anticipated that the motion in the vicinity of the current sheet at  y = - 1 will 
be uninfluenced by the finite width of the plate. Hence axes are taken at the 
lower end of the plate which is now supposed semi-infinite. This approximation 
is justified a posteriori by the nature of the resulting flow. In particular, for 
0 < 1 - lxl/t = O(l ) ,  we find that 

(5.1) 

- = - I ,  all. 

9 = 0, 3 = 0 when (-y)  > (/3t)i. 

3 = sgnx when y 9 (Pt)+, 
aY aY 

aY a Y  

Thus, for y = 0(/3t)4, 0 < 1 - lxl/t = O( 1) the solution of the semi-infinite plate 
problem gives (with a suitable change of axes) a$/ay, axlay, etc. for the finit,e 
plate problem in the region 

y+ 1 = O(Pt) i ,  0 < 1 - 1 . 1  t = 0(1), ( 5 . 2 )  

during the period (Pt)b < 1 < t ,  (5.3) 

where the inequality (,8t)4 < 1 is imposed by the condition that the length scale 
of diffusion is small compared to the width of the plate. 

Since the plate is now assumed semi-infinite it is convenient to consider the 
transformed integraI equation in the form ( 2 . 2 2 )  with x = 0. The problem is now 
of Wiener-Hopf type which may be solved by decomposition of the kernel 

(5.4) 
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The decomposition is not obtained for all E ,  p. However, it  is shown in appendix B 
that the solution does not oscillate or grow exponentially with time and that the 
dominant contribution to the inversions of U(k,p), j , ( k , p )  are obtained when 

p = O(t-l), k = O(Pt)-k (5 .5 )  

j , ( k , p )  = -p-1( 1 - iK)-i, (5.6) 
U(k,  p) = iP&p-Q{ 1 - (1 + iK)&}/K, (5.7) 

where K = P p 4 k .  (5.8) 

Making these approximations a splitting of the kernel is obtained which leads to 
the solutions 

The k-inversions are performed by deforming the contour of integration 
around the cut Re K = 0, Re (1 - iK) < 0 for j,, and around the cut Re K = 0, 
Re(1 +iK) < 0 for U and lead to  

jO(Y,P) = -n-~P-~Y-W""P (-P&Y/PJ) (Y > 0)) (5.9) 

The p-inversions are obtained immediately (Erdelyi et al. 1954, p. 246, equation 
(9) and p. 386) in the form 

(5.11) 

where (5.13) 

Moreover, when IyI < (Pi!):, the electric current and velocity on x = O +  are 

(5.14) 

(5.15) 

while, for IyI % (Pt):, both j, and u decay exponentially as exp ( -  y2/4Pt). 
Finally it is demonstrated in appendix B that the total electric current on the 
plate and the flux of fluid past the plate are 

The integral constraint (5.16) is in agreement with the requirements (5. I) ,  
corresponding to a &function for the electric current when ,8 = 0. The finite flux 
of fluid (Pt/n)* past the plate is unexpected but presumably an exact analysis 
would reveal the return of this small quantity of fluid outside the layer. 

32 F L M  41 
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Since (5.9) is only approximate it is unnecessary to retain the full accuracy of 
(2.31). Thus after one minor approximation 1 +pp - 1, (5.9) and (2.31) lead to 

On y = 0, the current distribution may now be obtained without further approxi- 
mation. Making the substitution 5 = (pp)*q, the inverse of (5.18) is determined 
(Erdelyi et al. 1954, p. 277, equation (10)) and leads after some manipulation to 

j(x,O,t) = -(sgnx)(2npIxl)-& (0 < l-(Ixl/t) = O ( l ) ) . t  (5.19) 

For both x and y non-zero the p-inversion of (5.18) has not been obtained. 
However, provided IyI/,/(Pt) < 1 and lx\/t < 1, (5.18) may be approximated 
further by retaining only the first term in the expansion of the exponential and 
Bessel functions. The resulting expression is inverted with respect to p giving 
a convolution integral. In  terms of a similarity variable the electric current is 

(5.20) 

At first sight, the large velocities near x = y = 0 may seem somewhat 
surprising, for i t  could be argued that the introduction of dissipation in the 
equations would smooth out discontinuities, and certainly not increase the 
velocity of the fluid. However, the effect of the dissipative term is rather indirect 
acting through the diffusion of electric current. The physical mechanisms 
involved may be understood by determining which terms of equations (1.8) to 
(1.10) are important. 

Evidently the crucial step in the decomposition of the kernel (5.4) is the 
neglect of the second term. This corresponds to a neglect of the potential dis- 
turbance of the velocity on x = 0. Though we may expect the principal contribu- 
tion to  the potential disturbance of the velocity to  be on length scales O(t )  it is 
curious that it is not of some importance to the immediate vicinity of the end of 
the plate on length scales O(pt)*. Moreover, if the dominant contribution to the 
inversion integral (2.22) in the region 0 < 1 - lxl/t = O( l) ,  y = O(,&)* is obtained 
when p = O(t-l), K = O ( l ) ,  then consideration of the various terms in (2.17) 
indicates that  

(a$/ay) (x, k,p) = - (8*p-$((K-1)e ( 1  +iK)&exp [ -p( 1 + K2)* 1x11. (5.21) 

t This result is perhaps obtained more easily by following the same procedure leading 
to equation (5.22). 
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On y = 0, the inversion leads without difficulty to 

499 

Y Y 

FIGURE 6. The profiles of (a)  the electric current, (b)  the vorticity and ( G )  the velocity, for 
fixed xg (x3 > x2 > x1 > 0) and t ,  when y = O(Pt)&. 

Since the velocity is O(1) when lxljt = 0 ( 1 )  the assumption that (5.21) gives the 
dominant contribution is suspect. However, i t  is clearly correct asymptotically 

(5.23) 

and indicates that the large horizontal velocities are confined to the region 
I y / /J (b t )  < 1, [xl/t @ 1, while any jet-like structure completely disappears a8 

Ixl/ t+l.  
32-2 
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The totall electric current in the sheet is propagated as an Alfven wave subject 
W 

to the constraint [ jdy = - 1. Once clear of the plate ((Pt)& < 1x1) it spreads 
J --m 

transversely by diffusion subject to the approximate equations 

Evidently for y/,/(Pt) < 1, lxl/t < 1 the electrostatic 

(5.24) 

approximation is valid 
(neglect of ax/at in'(5.24)) and this may be traced through the similarity variable 6' 
in (5.20). 

There appears to be no simple explanation for the large velocities in the region 
y/d(Pt) < 1, lxl/t < 1. The nature of the electric current distribution (5.20) 
depends on the approximate equations (5.24) (with ax/at neglected) together 
with the boundary conditions on x = 0, y > 0 and is illustrated in figure 6(a).  
Now for x > 0, y = 0 we have @'/ax > 0 implying awlat > 0, while for x = 0, 
( -  6') 9 1 we have aj/ax < 0 implying awlat < 0. Thus the vorticity develops a 
dipole-like structure of increasing strength and so the fluid is accelerated by the 
action of the j x B force (figures 6 ( b )  and (c)). 

6. The final development of the motion Pt + 00 

We conclude this paper with some remarks about the final development of the 
motion (Pt)&+Co. Vorticity and electric current penetrate a distance O(t)  in the 
x direction as a result of Alfven wave propagation and a distance 0(/3t)+ in the 
y direction due to  magnetic diffusion. Restricting attention to the region 
0 < 1 - 1x1 /t = O( 1)  an approximate expression for the electric current is obtained. 

Since we are concerned with time scales large compared to /3-' the dominant 
contribution to the inversion integral ofjo(y, p )  is obtained when 

Making this approximation, (2.28) becomes 

where only the largest term in the integrals has been retained. Moreover (6.2) 
has the symmetric solution 

Applying the minor approximation 1 +,@I N 1, (6.3) and (2.31) lead to 
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Thep-inversion is determined (Erdelyi et al. 1954, p. 284, equation (47)) andleads 
after some manipulation to 

1 j(x, y, t )  = -'sl ___ k- [ t cosh [F (t2-x2)3 
7rpx -1 (1-[2)3 (t2-x2)3 

When 1x1 = O(t) ,  the electric current is small O(pt)-2. However, when lxljt 4 1 
the electric current is considerably larger and is given by 

Restricting attention to  this smaller region 1x1 < t ,  we may determine the 
velocity by making the further approximation 

K = P3p-gk 9 1, (6.7) 

in the transforms of $ 2 .  Hence (2 .22)  is given approximately by 

Inverting this expression with respect to k leads to the convolution integral 

(6.9) 
Y-k- 

and this is readily inverted with respect to p giving 

(6.10) 

Provided 1x1 < (t//3)3, the flow described by (6.6) and (6.10) takes a different 

Region I ,  I yI - 1 > (/3x2/t)3, 

5 1 - exp [ - (t/Px2) (Y - El2 ]  df;. 
Y - 5  

character in the following three regions (figure 2 (c)): 

(6.11) (a@/aY) - 1 + l Y l / ( l - Y 2 ) 4  
j N 0. 

Region 11, 1 - I yI B (/3x2/t)&, 

- a@ 
a Y  

jN-- sgnx Y 
(7rPt)S (1 - y2)& ' 

Region 111, 1 + y = O(Px2/t)+, 

t t  - "@~--"):a,[(-) (I+?/)], \ 
ay ,1277 P X ~  Px2 

(6.12) 

(6.13) 
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I 
I 
I 
I 

I 
I 
I 

I 

where 

+ a w y  

q5-*exp[-(B-q5)2]dq5. 
(6.14) 

The author is grateful to Dr H. K. Moffatt for his help and guidance, to a 
referee for some helpful criticisms of the original draft, and to the Scientific 
Research Council for the award of a Research Studentship. 

Appendix A 
The formal solution of the problem presented in 6 3 ( b )  is derived. Equations 

(1.8) to (1.10) are solved subject to the initial and boundary conditions (3.9) and 
(3.10). 

All the material of 8 2 follows except that II. is replaced by II. - y. In particular 
(2.22) gives 

Since the boundary conditions (3.9) imply that 

-m 
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5o(k P )  = lom jo(y. P )  eikYdy, (A 3) 

4970)  = B(-y)-$ (Y < O ) ,  (A 4) 

(A 5) 

U(k,p)  N e-itnp-lk-4 as k / p  + 0, (A 6 )  

the initial velocity distribution 

has the Fourier transform 
4(k ,  0) = +,In e-+ k-4. 

It follows by inspection that the condition (3.10) on the velocity is equivalent 
to the condition 

where U is analytic in the lower half k plane. Moreover, the transform is made 
analytic in a strip containing the real axis by defining k-4 as 

k-4 = lim ( k - i e ) - i ,  (A 7 )  
E-+O 

which is the natural extension of the definition (2.19). 
Evidently ( A l )  may be rearranged so that one side of the equation is an 

analytic function of k in the upper half plane Im k > - E and the other side is 
analytic in the lower overlapping half plane Im k < E .  This is the Wiener-Hopf 
procedure from which it is argued that both sides of the equation must equal at 
most a constant. Labelling terms analytic in the upper and lower half planes with 
the suffices 0 and 0 respectively and proceeding to the limit E+ 0, we obtain 

(A 8) 

where 

and where Pe (k, p )  is defined for 

Pe(k ,p)  is defined for 

- &r < arg k < &T, 

- &T < arg k < +n. 

The constant value (here a function of p )  of the two sides of 
determined uniquely by the condition on (A 6). It follows that 

;io(k,p) = - $JneitT (k-*), P;'(k,p), 

U(k ,p)  = iJ7re-i4Tp-1(k-4)e Pe(k,p) ,  

the equation is 

which (by equation (2.22)) is consistent with the condition (3.10). 

jl(y, t )  such that 

having the double transform 

The inversion of (A 10) is considered in detail. We define the new function 

(A 12) jO(% t )  = - 9 - 4  S(Y) +j,(Y, t ) ,  

h(k9 P )  = jaw, P )  + 4JrP-*. (A 13) 

t The splitting of { 1 + I,?l/p}-l, when p = 1, is given by Carrier, Krook & Pearson (1966, 
page 396, equation (8.72)). 
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The function j l ( k , p )  is inverted with respect to k and leads to 

where 

provided R e p  > 0. For y > 0, the result is obtained by deforming the contour of 
integration (Im k = 0)  around the cut Re (k /p )  = 0, I m  ( k / p )  < 0. (This has been 
made possible by removal of the constant value of j,, BS k - t c o ) .  The inverse of 

FLr) 

t 
0.027 

0.065 

0.115 

1 2  5 10 
I I  I 

FIGURE 8. The function F l ( ~ )  plotted against 7. 

p-l jo(y ,p)  is determined without difficulty as a convolution integral. Hence the 
electric current distribution on x = 0 + is 

where 
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and so by equations (1.11) the vorticity (and e.lectric current) distribution are 
known everywhere. Moreover the total electric current Jo(t) propagating away 
from the plate at  time t(  > 0) is 

r m  

= [ j o ( k ,  t )  + ;Jn eifn k-a 6(t)lk,,. 
Since the Laplace transform of Jo(t) is 

the total electric current is zero. 
j , (p )  = [ - ldn 2 eitn E-B {eB (k /P)  - 1)1,c=o = 0 

Similarly it can be shown that the horizontal velocity on x = 0 is 

where 

Finally, the asymptotic forms of F1(7) and G1(7) are 

6(7) + (1/27r) In T + O( 1 )  as T-+ 0, 

- (1/2n) 7-2 lnT + O ( d )  as T-~CO, 
F1(7) = 1 

1 - ( 1 / 2 n ) ~ l n ~ + 0 ( ~ )  as 7+0, 

7-4 + O(7-6)  as r+co. = { 
The function F1(7) was evaluated on the Cambridge University Titan Computer 
and was found to converge slowly to its asymptotic forms (figure 8). This is to be 
expected as the terms neglected are only smaller by a multiple of (In 7)-l. 

Appendix B 
The Wiener-Hopf problem of 8 5 is considered; in particular an approximate 

decomposition of the kernel (5.4) is obtained. In  order that the Fourier transform 
of allr(0, y ,  t ) /ay should exist the boundary condition to the prototype problem is 
posed in the modified form 

where the limit 6-t 0 is eventually taken. 
Taking Fourier and Laplace transforms, (B 1) and (2.22) lead to 

where [kl is defined by equation (2.19), 0 means the function is analytic for 
I m  k < 0, 0 means the function is analytic in some overlapping upper half plane 
and the suffix 0 of j ,  has been dropped.? For convenience we define 

t For the present p is assumed constant. 



where the right-hand side is analytic in the lower half plane and the left-hand side 
is analytic in some overlapping upper half plane. Hence by conventional Wiener- 
Hopf arguments both sides are equal to a t  most a constant which is readily 
seen to be zero. It follows, in the limit 13+ 0 that, 

jc+(k, P) = - {pkCe(O, Ac+(kp)}-‘? (B 7)  

Consider the cuts of D(k,p), namely k = & ie and k = & (PIP);. Clearly on 
continuing D(k,p) analytically with respect t o p  these cuts remain the same side 
of the axis I m k =  0, provided -r < argp < r. Now continue A@(k,p) 
and B,(k,p) analytically from some fixed p (Rep > 0) to all p such that 
-r < argp < n. Since the cuts of A,(k,p) and B,(k,p) correspond to the cuts 
of D(k,p) in the lower and upper half k planes respectively, and since (by the 
property mentioned above) these cuts remain the same side of the axis Im k = 0, 
it  follows that the analytic continuations of A@(k,p) and Be(k,p) must still be 
the required ‘splitting’ of D(k,p). Further, the only zeros and poles of D(k,p) 
are located a t  p = 0, - lip. Hence A,(k,p), B,(k ,p)  (-r < argp < n) are 
analytic functions of p when Im k 2 0, Im k 6 0 respectively. Since inversions 
with respect to k are obtained by integrating along Im k = 0, it follows immedi- 
ately that $,(y,p), G(y, p )  only have a cut along I m p  = 0, R e p  < 0, together 
with possible zeros or poles at p = 0,  - lip. Hence the solutions do not oscillate 
or grow exponentially with time and we are justified in assuming that the main 
contribution to the inversion integrals is obtained when 

p = O(t-1). (B 9) 

k = O(@t)-&, (B 10) 

(B 11)  

Since the transverse length scale of the electric current sheet is O(pt)+, the 
dominant contributions to the inversions of j, and u are obtained when 

or equivalently, when combined with the approximation (B 9) 

K = /&pdk = O(1). 

Making these approximations in D(k, p) leads to  

and so by the symmetry of equation (B 3) 
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Hence i t  follows that 
j ,(k,p) N -p+( 1 - iK)-+, (B 14) 

(B 15) u,(k,p) - i p p - q 1 -  ( 1  + i K ) t ) / K .  

Moreover, since Ue(0 ,P)  = w p - 8 ,  je(0,p) = -p-1, (B 16) 

- 

we obtain immediately two integral constraints on the flux of fluid and electric 

current, namely ro 

fm 

The problem now arises: in which regions of the flow will the transforms (2.15) 
to (2.18) with the value ofjo(k,p) given by (B 14) be valid? Evidently the expres- 
sions for the vorticity and electric current will be valid €or 

y = O(@t)B, 0 < 1 -  1.p = O(1) 

(note 1x1 may be O(t ) ) ,  since the exponential term dictates that the main contri- 
bution to the inversion integrals will be obtained when p = O(t-1)) K = O(1) 
(or K B 1 if 1x1 < t ,  y = 0) .  However, discussion of the velocity distribution is 
left to $ 5 .  
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